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Abstract-The classical diffusion theory is based on the assumption of local thermal equilibrium. For 
conduction in thin films or at low temperature, the classical theory of heat conduction breaks down. 
Various investigations have shown that a wave-type conduction equation adequately describes the thermal 
energy transport. This paper describes a general solution technique when the wave nature of thermal energy 
transport is dominant. The solution for temperature distribution is derived for finite bodies. The definition 
of Green’s functions for a wave-tvoe conduction eauation is oresented and a general form of the Green’s 

functionsolution method for finite dodies is introduced. 

INTRODUCTION 

THE EXISTENCE of a thermal wave in super fluids near 

absolute zero has been known for decades [ 11. Bau- 
meister and Hamill [2,3] studied thermal wave propa- 
gation in a semi-infinite solid subject to step change 
in the surface temperature. Ozisik and Vick [4] studied 
the reflection of a thermal wave in a one-dimensional 
slab. This subject has been intensely studied by numer- 
ous investigators and results of various investigations 
are available in the literature. An extensive survey of 
published work is beyond the scope of this paper; 
however, an excellent up-to-date survey of published 
work is reported by Ozisik and Tzou [5]. 

The solutions for wave-type conduction equations 
are generally reported for infinite bodies. Ozisik and 
Vick [4] presented a solution for wave propagation in 
a slab bounded by two insulated surfaces. This paper 
describes a method of solution of the thermal wave 
equation in many finite bodies that accept solutions 
for the classical diffusion equation. Solutions can be 
derived from the classical Green’s functions. Because 
the classical Green’s function is predictable, the solu- 
tion of the wave-type conduction equation is readily 
available using the tabulated values [6] of the classical 
Green’s functions [7]. The solution presented in this 
paper leads to a short-cut procedure that would pre- 
empt the need for lengthy mathematical derivations. 

It is shown that a solution of the Fourier-type 
diffusion equation serves as the building block to con- 
struct a solution for the thermal wave equation. Fol- 
lowing mathematical formulations, examples dem- 

onstrate the procedure. The numerical study shows 
that the convergence of the series solutions is relatively 
slow. A procedure to accelerate the convergence of 
the Green’s function is presented. 

MATHEMATICAL STEPS 

This presentation describes a generalized solution 
of the heat conduction equation in the wave form [5] 

a T(r, 4 
V. WT(r, 01 +g(r, 4 = PC, at 

+ & a2 T(r, 0 
o2 7 

(1) 

where 

ct 4@, 0 
i7@, 0 = g(r, 0 + ;; Ft 

The function g(r, t) represents an internal heat source. 
The heat source can be a distributed or a discrete 
function of position and time. The solution for equa- 
tion (1) is derived from the classical Fourier-type con- 
duction equation. The fundamental solution of the 
Fourier heat equation 

aT(r, t) 
V. [kVT(r, t)] = pcP at 

in a finite body subject to homogeneous boundary 
conditions is 
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NOMENCLATURE 

b radius, m 
B,, Bz constants of integration 

C,“, c,ll constants of integration 

cP specific heat [J kgg’ K-r] 

F, eigenfunction 
g(r, t) volumetric heat source [W mm’] 

.4 see equation (2) 
g:(t) function of time, see equation (11) 
$‘ (t) Laplace transform of gz( t) 
G( *) Green’s function for diffusion 

equation 
G, ( * ) Green’s function for thermal wave 

equation 

T* auxiliary temperature function [K] 
T0 effect of initial conditions on T [K] 
TG effect of source on T [K] 

TR effect of boundary condition on T [K] 

T,, ZT/at at t = 0 
T, Tatt=O 
t time [s] 
V volume [m’] 
x, Y> z coordinate [m] 
x’, y’, z’ coordinates of the source in Green’s 

function [ml. 

G,,( *) u-conjugate component of G, 
G,,,( *) b-conjugate component of G, 
k thermal conductivity [W m ’ K ‘1 
L thickness of slab [m] 
I, m, n, p indices 

Nil norm, defined by equation (8) 

q heat flux [w m “1 
r, r’ radial coordinates [m] 
r position vector [m] 
r’ position vector for source in Green’s 

function [m] 
r* dummy variable [m] 
s Laplace transform variable 
T temperature in thermal wave equation 

Kl 
i; temperature in Fourier diffusion 

equation [K] 

Greek symbols 
thermal diffusivity [m’ s _ ‘1 

;;,, defined by equation (10) 
eigenvalue [s- ‘1 

: delta function 

Pm eigenvalues, roots of .I,( pm”) = 0 
eigenvalue 

:: coordinate of thermal pulse [m] 

P density [kg m-“1 
cr speed of wave [m SC’] 

; 

time of the source in Green’s function 
angular coordinate 

4’ angular coordinate of source 
$,(t) time function in the solution 
w,(s) Laplace transform of IC/.(t) 

0, JE?. 

T(r, t) = f F”(r)e-;J. 
?li I 

(4) V*(kVT*)+ f V*[kVF,,(r)]$,e-;‘J 
n= 1 

The eigenfunction F,(r) satisfies the relation 

V * WF,,(r)l = - ynw,FnW. (5) 
dT* k a2T* 

+9 = PCpF + 2 at2 ~ +PC, f F,(r) n= I 

The following derivations show that the solution of 
equation (1) is a modified form of equation (4) : X 

Solution of the wave equation. A solution for equa- 

-ynt,bne~~~‘+ %e-:‘J + $,,g, F,(r) l 
tion (1) is considered by modifying equation (4) : 

T = T* + f $,,(t)F,(r)e -,J. 
“= I 

(6) 

This solution includes an unknown function of time, 
$(t). The parameter y.t is the apparent damping factor 
while the actual damping factor includes the con- 
tribution of $(t). The computation of function t,b(t) 
is the subject of this mathematical formulation. The 
function T* = T*(r, t) is any known differentiable 
function that satisfies the non-homogeneous bound- 
ary conditions. Further discussions on the nature of 
the function T* appear later. Substitution of T from 
equation (6) in equation (1) yields 

_2y,!3!Ee-:.,“‘+ !!xe-:,,r 
dt 1 dt2 

(7) 

Now, one can use equation (5) to eliminate 
V* [kVFn(r)]$nem:J on the left-hand side and 
pc,F,(r)g,$,ePJ on the right-hand side of equation 
(7). Next, multiply both sides of equation (7) by F,,,(r) 
and integrate over the domain. The orthogonality con- 
dition requires that 

s Fn(WmW d V = 
Owhenn #m 

N when n = m. (8) 
v n 

The result is 
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&‘.’ s[ gr, t) + v * (kVT*(r, t)) 
Y 

aT*(r, t) k a2 T*(r, t) 
-PCPT-- 

Is2 at* 1 Fn’,(r) d V 

where $n and 4. stand for drj,/dt and d2$,/dt2, respec- 
tively. Equation (9) is a second-order ordinary differ- 
ential equation, 

where g,*(t) is a function of time that incorporates the 
effect of the internal heat source in the solution, which 
is 02/kNn multiplied by the left side of equation (9), 

aT* k a2T* 
-P”px-a at2 ~ Fn(r)dV (11) 1 

where 9 = g(r, t) and T* = T*(r, t). 

Integration of ordinary dgferential equation 
The differential equation given by equation (10) has 

an exact integration. The solution using the Laplace 
transform method is presented here to facilitate the 
subsequent mathematical derivations. Defining the 
function $,,(s) as the Laplace transform $,(t) and 
g:(s) as the Laplace transform of g:(t), equation (10) 
gives the function $Js) as 

cm = m) 
s2 - 28,s + y,’ 

+ s~,(o)+li/“(o)-28”~“(0) 
s* -2fi,s+y,z 

(12) 
The denominators are the same and have two distinct 
roots 

s, = @.+JR and s2 = B”-,/m. 

(13) 

The function 4.(s), equation (12) can be written as 

(14) 

where B, and B, are constants. The inverse transform 
using the convolution theorem is 

*“(t) = 
f er,(r-r) 

s 

_es,(t-r) 
g*(r) dz + B, es]’ + B2e’?‘. 

cl 2&x 

(15) 

When /?f - yi 2 0, the values of s, and s2 are real ; 
otherwise, these roots are complex. The real roots 

correspond to the case when y,u/a’ < l/4 and the com- 
plex roots are for r,,a/o’ > l/4. The parameter cc/u’ is 
the relaxation time [8] and y,(a/a*) = l/4 is a con- 
dition that governs the transition of a thermal wave 
from over- to under-damped wave modes. Equation 
(15) after substitution for s, and s2 becomes, 

$,(t) = eSJ{C,, sinh [J-t] 

+ C,, cc& [&B: -ui>tl} 

+ 
eSJmr) sinh [Jbi -Y: (t - 711 g*(7) d7 

JFZ = 

when/?z-ri > 0. (16) 

Depending on the sign of the quantity (PI - yt), the 
arguments of the hyperbolic sine and cosine in equa- 
tion (16) will be real or imaginary. The temperature 
solution is obtained by substituting t,bJt) from equa- 
tion (16) in equation (6) : 

T(r, t) = T*(r, t) 

+ F,,(r)e-yJeBJ{CIn sinh [J’mt] 

+ cZn cash [,/Rt]} + f F,(r)O’ 
II= I 

’ 
X s epJ_‘) sinh [,,/m(t - r)] gY7) d7 

0 JETi n . 

(17) 

Equation (17) is the solution of equation (1). As dem- 
onstrated by examining equation (17), the general 
solution is the sum of three effects : initial conditions, 
To, internal heat source, T,, and boundary conditions, 
TB. For convenience, the solution is written as 

T(r, 0 = T, (r, t) + To (r, t) + Ta(r, t) (18) 

and each of the three functions is described separately. 
The effect of the initial conditions is examined using 

the following terms in equation (17) : 

T,,(r, t) = 2 F,,(r)em7JePJ{CIn sinh [JRt] 
n= I 

+ Gn cash [J~tl$. (19) 

Two initial conditions are needed to compute C,,, and 
C2w The first initial condition, T&, 0) = 
T(r, 0) - T*(r, 0) = Ti(r), equation (19), after using 
the orthogonality condition, equation (8), yields 

C2,, = & r T,(r’)F,(r’) dV’. (20) 
IV, JY 

Applying the second initial condition [aT,(r, t)/ 
at],_ ,, = [aT(r, t)/at-aT*(r, t)pt],= o = T,,(r) to 
equation (19) and following the application of the 
orthogonality condition one obtains 
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T,;(r’)F’(r’) d I” 

+ g+. (21) 

Equations (19), (20), and (21) can be combined into 
the following single equation : 

To@, f) = 1 s x Fn(r)F,,W) e .,,,,eB,,I 

vn=, 
N 

n 

x 1 T,(r’) cash [,/ml] + 
sinh [Jmt] 

I ,:Bt 7: 

x g T,(r')+ T,,(r') II dV’. (22) 

Equation (22) holds for the conditions fii -~2 > 0 
and /Ii --yz < 0. When /I: -yi < 0, the following 
identities apply : 

cash [Jmt] = cos [jr: -b; t] 

sinh [d-t] = sin [,/mtl 

I/R 

For the evaluation of TG(r, t) in equation (18), con- 
sider the case when the source term does not have 
a zero value. The function T&, t), equation (18), 
accounts for the contribution of g(r', T) to g,*(r) in 
equation (17). The contribution of volumetric heat 
source using equations (2), (1 l), and (17) is 

T,(r,t) = fj Fn(r)eOJ 
I> = 1 

x 
E %tr’, 7) 

g(r’,r)+ ~ ___ 
02 ar 1 dL” dr. (24) 

Equation (24) equally holds when pz -ri > 0 or 
bi -rz < 0 ; see equation (23). 

The function TB(r, t) is the contribution of the 
boundary conditions to the temperature solution. The 
function TB(rr t) consists of the terms that contain 
T*(r, t) in equation (17) and the definition of g:(t) 
using equation (11). Then, the contribution of non- 
homogeneous boundary conditions, TB(r, t). is 

T,(r, t) = T*(r, t) + 1 F,(r)e-;n’ 
n I 

dT*(r' T) 
V - [kVT*(r’. r)] -PC, -( 

c”r 

dV’dr. (25) 

If T* is the steady-state solution, then 
V. [kVT*(r)] = 0 and @T*(r)/& = 0. However, it 
is possible to have V* [kVT*(r, t)] = 0 while 
c?T*(r, t)/at # 0. 

The substitution of equations (22), (24), and (25) 
in equation (18) represents the solution of the thermal 
wave equation. This solution uses the eigenfunctions 
of the solution for the Fourier-type heat conduction. 
Since solutions of the Fourier-tjrpe heat conduction 
for various finite bodies are available [6, 71, equation 
(18) yields the solution of the thermal wave form of 
heat conduction. 

The procedure developed here leads to the devel- 
opment of a methodology that is based on the Green’s 
function solution method. The Green’s function solu- 
tion method is a better and simpler procedure to 
obtain a solution for a thermal wave equation. The 
objective is to develop a solution technique for the 
thermal wave equation that uses the already available 
tabulated Green’s functions [6] for the Fourier-type 
conduction equation. To present the solutions in 
terms of universally available solutions, it is necessary 
to define the Green’s function. Here, the definition of 
the Green’s function is the same as the definition of 
the Green’s function for Fourier-type conduction. It 
is the temperature distribution as a function of r and 
t when there is a quantity of heat released at point 
r* at time r* according to the relation 
g(r,t) = pc,d(t--*)&r-r*). This leads to a deri- 
vation of a Green’s function based on existing infor- 
mation available in the literature. The function g(r, t) 
using equation (2) takes the following form : 

g(r,t) = pc,J(t-T*)6(r-r*) 

R a&-T*) 
+pc$(r-r*);Tdf. (26) 

The definition of the Green’s function presented here 
is different from that given by Ozisik and Vick [4] 
because of the second term on the right-hand side of 
equation (26). 

After differentiating 6(t-T*) with respect to T* 

instead oft, equation (26) becomes 

a(r,t) = pc,S(t-T*)d(r-r*) 

(27) 

Equation (24) provides the Green’s function when 
Q(r, t) is given by equation (27). One must replace r 

by r' and t by T in g(r, t) and then substitute g(r', T) in 
equation (24) to obtain 

X s L F,(r’) pc$(T-T*)h(r'-r*) 
Y 
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F,(r’)G(r’-r*)dP” 

’ exp [ - (yn - b,,)(t - z] sinh [m $(t - t)] 

../I?? 

X 
‘exp[-(y,,-P,)(t-z)]sinh[dR(t-r)] 

JEZ 

(28) 

Following integration of equation (28) using the stan- 
dard delta function identities, subsequent differ- 
entiation with respect to z*, and some algebra that 
uses the definition of 8, in equation (lo), one obtains 

x eB.C,_iI sinh ]cUr - 711 
2aw,/a* +’ N 

m unwon@*) e_y,cr-z*j 
n= I n 

x {e8,+r*) cash [,/R(t-r*)]}. (29) 

The function TG(r, t) is the temperature at point r and 
time t when there is an energy g(r,t) = 
pc,d(t--*)&r-r*) at point r* released at time z*. 
Accordingly To@, t) represents the Green’s function 
computed for the wave-type conduction equation. 
After replacing r* by z and r* by r’, the function 
T,(r, t) will be designated as G,(r, t]r’, t), that is, 

G,(r, tlr’, r) = G,,(r, tlr’, r) + %(r, rlr’, r) (30) 

where 

Or, F,(r)F,(r’) 
r&Jr, t I r’, 7) = C 

n=l 
N 

n 

x e-T,cr-r) eb,(r-rl sinh [w,, (t - z)] 

2uru,,/02 
(31) 

and 

X 
G&,fIr’,r)= C 

F, (r)Fn (r’) 

?I= 1 
N 

n 

-Y~(‘-r){eSJ-” cash [w,,(t- r)]} (32) 

where w, = TR and 2ctw 10’ = Jl -4y ajo’. 
The wave form o”f thenGreen’s fuiction, equation” (30), 
has two conjugate components : an u-conjugate com- 
ponent and a b-conjugate component. The b-con- 
jugate component is useful for calculating the contri- 
bution of the initial condition. Except for the terms in 

curly brackets, the definitions for G&r, 1 1 r’, 7) and 
G&r, t 1 r’, z) are the same as the definition for the 
standard Green’s function for the diffusion equation 

G(r, t I r’,z) = c m ~nWn(r’) e-ync,-Tj 

N  (33) 
“=I n 

A comparison between equation (33) and equations 
(31) and (32) shows that these equations have an ident- 
ical form. A Green’s function using equation (33) is 
chosen as the referenced quantity because, for a given 
problem, it can be inferred from the universally avail- 
able Green’s functions for Fourier-type conduction 
[6]. This means that many Green’s functions can be 
simply written down using the tabulated Green’s func- 
tions given in ref. [6] and then augmented by the 
bracketed terms in equations (3 1) and (32). 

Green’s function solutions 
Equation (22) can be written in terms of the Green’s 

function components GJr, t 1 r’, z) and G,,(r, t 1 r’, z) : 

To@, t) = 
s[ 

T,WG&, t I r’, 0) 
Y 

+ ‘,“: Tii(r’)G,,(r, t 1 r’, 0) dk”. 1 (34) 

Except for the term corresponding to T,,(r’), equation 
(34) is similar to the corresponding Green’s function 
solution for Fourier-type heat conduction. Similarly, 
equation (24) can be written in the form that uses the 
Green’s functions for the Fourier heat conduction as 

G,,(r, t ) r’, T)g(r,‘T) dP” (35) 

where g(r’,z) is given by equation (2). The con- 
tribution of the heat source in the Fourier-type heat 
conduction is quite similar to equation (35). Here, in 
addition to a factor of 2, the u-conjugate component 
of the Green’s function is used while the source term 
in equation (35) is represented by g(r’, z) instead of 
g(r’, r). 

For the contribution of the boundary conditions, 
equation (25) using the Green’s function, equation 
(31), is 

T,(r, 1) = T*(r, t)+ “; dz 

x s dT*(r’, z) 

v 
V * [kVT*(r’, r)] - pcP 7 

-$[“2T;;;‘T)]]. (36) 

Equation (36) is analogous to the alternative Green’s 
function solution defined in ref. [6]. When a T* func- 
tion is not readily available, it is possible to set 



2620 A. HAII-SHEIKH and J. V. BECK 

aT(r’, 7) 
G (r, t I r’, 7) an 

- T(r’, 7) 
aG (r;; r’, 4 dS’. (37) 1 s 

This form of T* causes the term 
V. [kVT*(r, t)] -pc,[aT*(r, Q/at] to become zero. 
However, this is not recommended because the con- 
vergence of equation (35) is poor when G(r, t 1 r’, z) is 
an infinite series. In some cases, it is preferred to solve 
the Laplace equation V. [kVT*(r, t)] = 0 using the 
non-homogeneous boundary condition and treating 
time, t, as a parameter. Equation (36) yields the value 
of TB, while the terms containing aT*(r’,z)/& and 
?‘T*(r’, s)/&~ are retained. 

As stated earlier, the Green’s function is readily 
available for many problems. Since the substitution 
of equations, (34), (35), and (46) in equation (18) 
yields the temperature, the lengthy algebraic steps 
described in this paper need not be repeated. 

Transition to diffusion equation 
It is now shown that the thermal conduction 

described by the wave equation reduces to the solution 
for the diffusion equation. The task is simplified by 
proving that equation (30), as cr -+ co, reduces to the 
corresponding Green’s function equation for the stan- 
dard thermal diffusion ; that is, 

>irnm G,,(r, t 1 r’, z) = iG(r, t ) r’, 7) 

and 

(384 

)irn= Gwh(rr t 1 r’, t) = fG(r, t / r’, t). (38b) 

These two limiting values can be shown if 

ebn(I_T, sinh [d--Z)1 , 
2awJu2 = ’ 1 

and 

lim [efi~(‘-‘) cash [q,(t--)]I = f. 0-m Wb) 

Proof. Using /Ifl defined in equation (lo), w, reduces 
to 

W) 

This equation, following expansion using the binomial 
series, becomes 

(&= ; 
( >I 

l_;!y_!$ 4y,r’2_... t (41) 
‘(02, I 

For large c, one can assume 4y,a/a’ c 1. Retaining 
the first two terms in square brackets in equation 
(41) and replacing all remaining terms by E(g), the 
function w,, becomes 

(42) 

where E(o) -+ 0 as cr -+ co. Equation (39a) can be 
rewritten as 

-exp [(fln--n)(t-r)]} = i. (43a) 

According to the definition, pn = ~~---‘/2a, equation 
(lo), and w, in equation (42), the following quantities 
in equation (43a) are calculated: D’/ 

(4oM = (a2/4cOl](a2/2a) - yn + E(a)l, Bn+wn = 
E(o), fin--w. = 2(y,-a2/2a)-E(a). When Q+ cc, 
then a2/(4w,a) + l/2, /I. + w, + 0, and 8. -(I), -f - a. 
Therefore, the first term in the curly brackets in equa- 
tion (43a) approaches 1 and the second term in the 
curly brackets becomes zero. Similarly, equation (39b) 
reduces to 

,Il_m f [exp (B. + w,)(t - 41 

+exp [(B. -w,)(t-T)] = i (43b) 

This proves that equations (39a) and (39b) are correct. 
At the limit when d -+ co, the identities given 

by equations (39a) and (39b) will force the terms 
on the right-hand side of equation (30) to 
become lim G,,(r, tlr’, r) = (1/2)G(r, tlr’, z) and 
lim Gwb(r, 42:~) = (1/2)G(r, t]r’, 7). Accordingly, the 
“‘f” so utions for the wave form of the diffusion equation 
will reduce to the solutions for the standard diffusion 
equation as d + co. 

Example 1 
The objective of this example is to formulate the 

Green’s function for a slab insulated on both sides 
and to provide numerical values. The one-dimensional 
example compares the mathematical derivation pre- 
sented in this paper with the work of Ozisik and Vick 

141. 
Solution. The Green’s function for Fourier-type 

conduction (X22 in ref. 161, p. 492) can be written as 

1+2 f exp[-m2n2a(t-7)/L2 
m= * 

Xcos(~)COS~)~. (44) 

Comparing this equation with equation (33), the first 
eigenvalue is 7, = 0. The remaining eigenvalues are : 
7, = l?a/L2, y3 = 2?n2a/L2,. , yn = (n- 1)2n2a/L2. 
Also, the eigenfunctions are F,(r) = cos [(n- l)nx/L] 
and F,(r’) = cos [(n - l)rcx’IL], and the norms are 
N, = L and N, = L/2 for n > 1. Equation (44) can be 
written as 

G(x,t Ix’,z) = i Fcos 
m=O 

exp[-m2n2a(t-7)/L’] (45) 
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where &, is the Kronecker delta, a,,, = 1 when m = 0 
and 60, = 0 when m # 0. The a-conjugate and b-con- 
jugate components of the Green’s function are simply 
obtained by multiplying equation (45) by the terms in 
the curly brackets of equations (31) and (32). The 
results are 

Z 2-C&, 
G,,(x, tlx’,7) = c Lcos 

VT=” 

I?lZX' 
x cos ( 1 L exp[-m*z’a(t-7)/L’] 

tively fast convergence for G,,,(a) by extracting the 
contribution of the energy pulse, represented by the 
delta function, from this solution. For instance, at the 
limit when cP -+ 0 one obtains w, -+ im7ns/L, indi- 
cating that the material domain does not have a 
capacity to store thermal energy. For the zero-heat- 
capacity condition, CL -+ co, equation (46b) reduces to 
a solution for an energy pulse moving in the material 
domain and reflecting from the walls. Using the 
expansion of the delta function in the Fourier cosine 
series, the right-hand side of equation (46b), for the 
case of c( + co, reduces to 

y eP,,,(, rj sinh b& - 91 
2Xtw,,‘d I 

(4ha) f 2-;.“‘cos 
nl = 0 

and 

Jr 2-60, 
G&x, t 1 x’, T) = 1 Lcos 

m=O 

x cos 
i ‘1 7 exp[-m*n’a(t-7)/L2] 

where 

and 

x [eP,(t-r) cash [w,,,(t -z)]] (46b) 

pm = m2n2a/L’-a2/2a 

w, = J/Y: - (m’rc’a/L’)‘. 

The sum of equations (46a) and (46b) gives the value 
of the Green’s function for the thermal wave equation, 
as indicated by equation (30). The parameter uL/a 
is the dimensionless wave speed. A one-dimensional 
solution, for a pulse with finite thickness, as reported 
in ref. [4], will reduce to the Green’s function given by 
the sum of equations (46a) and (46b). 

x ~[G~~x+.r’)-~~+s~lx-x’I--:~l 
{ 

+C cu ?Ijhcos (ycos (!$) 
m=O 

x [cosh(w,(l-7))-cos (mno(t-7)/L)] (46~) 

An examination of equations (46a) or (46b) shows 
that exponential terms may be combined and written 
as exp [ - (a2/2a)(t - 7)] which is independent of m and 
will not contribute to the convergence of the solution. 
Therefore, the convergence of equation (46b), in par- 
ticular, is expected to be slow. However, when aL/a is 
large, the terms in the large square bracket, equations 
(46a) or (46b), will approach i, equations (39a) and 
(39b), and the convergence will be similar to that for 
the classical Green’s function in diffusion problems. 
Figure l(a) shows the rate of convergence for G(*), 
G,.,,(*), Gwb(.), and G,(e). The a-conjugate com- 
ponent of the thermal wave equation converges 
reasonably fast, but slower than the convergence of 
the Green’s function for Fourier conduction, G(e), 
equation (45). The b-conjugate component has a large 
contribution to the value of G,(m) and it did not con- 
verge after 60 terms. Figure l(b) shows 
G,(s) = G,,(*>+G,,(*) after 100 terms, 10000 
terms, and 1000 000 terms. Figure 1 (b) indicates that 
equation (46b) oscillates about the solution and does 
not converge to the solution. 

Figure 1 (b) shows that the Green’s function, LGJ * ), 
that uses G,,( * ) from equation (46~) sufficiently con- 
verges within 100 terms, whereas for a calculation 
using equation (46b) there is a continuous oscillation 
about the mean value for a large number of terms. 
For a faster convergence or when temperature is not a 
smooth function of position and time, equation (46~) 
should be used instead of equation (46b). The data 
are for aLla = 10, a(t-7)/L2 = 0.025, and x/L = 0.2. 
The reason for a better convergence, using equation 
(46b), is that the quantity cash [a,,(t-T)] - 

cos [m7co(t-7)/L] + O’as m -+ co. 
Figure 2 is prepared for aL/a = 10. It shows the 

value of the LG,(x, t I x’, 7) as a function of x/L when 
energy is supplied to the x = 0 surface at time 7. The 
solid lines in the upper portion of the figure, Fig. 2(a), 
describe the wave front for small times of 
cr(t-7)/L2 = 0.025, 0.05, and 0.075. For comparison, 
the dashed lines represent the solution of the Fourier- 
type diffusion equation. Notice that early in the 
diffusion process the difference between the two solu- 
tions is quite large. 

One can modify equation (46b) and achieve a rela- It is interesting to observe several characteristics of 

where 5 = la(t -7) -2jLj and i corresponds to the 
number of reflections from the x = L surface. The 
value ofj = 0 before the pulse is reflected or after one 
reflection from the x = 0 surface ; the pulse first arrives 
at x when 5 = 1 x-x’1 and after reflection from the 
x = 0 surface when 5 = x+x’. Multiplying both sides 
of this identity by exp [ - (a2/2a)(t -7)], then adding 
the resulting relation to equation (46b), yields 

Gwb(x, t I x/,7) = exp[-(02/2a)(t-T)] 
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FIG. 1, (a) Convergence of the Green’s function for the thermal wave equation and the Green’s function 
for Fourier conduction. (b) Acceleration of the convergence of G,( *) when a(t-r)/L* = 0.025, CL/U = 10, 

and x/L = 0.2 

the data shown in Fig. 2(a). It is quite clear that the 
wave-type conduction and Fourier-type conduction 
give quite different results, particularly at the smaller 
times. However, for each of the dimensionless times 
shown in Fig. 2(a), there is clear evidence of a traveling 
wave. This has been observed before but these tra- 
veling waves have a Dirac-delta-type moving wave 
at the end location of the wave and their energy is 
dissipating exponentially as shown by equation (46~). 
There is no temperature rise beyond that point (for a 
given time). However, as the strength of the pulse 
decreases with time, the area under any curve in Fig. 
2 remains constant. The bottom portion of this figure, 
Fig. 2(b), shows the wave front following a reflection 
from the x= L wall at a(t-t)/L’=O.l. At 
~(t-r)/L* = 0.125, the difference between the two 
solutions becomes small ; therefore, the energy 
remaining in the traveling energy pulse rapidly dimin- 
ishes as the wave travels toward the x = 0 plane. 

line in Fig. 4 represents LG(x, t 1 x’,z) for Fourier 
conduction. In this figure, there is a marked difference 
between the two solutions, especially when aL/a is 
small. The temperature at x = L remains equal to zero 
until the arrival of the thermal wave when a jump in 
temperature occurs. Figure 4 is similar to Fig. 3, 
except the Green’s function is calculated at x = 0 
instead of x = L. Each curve in Fig. 4 includes one 
reflected pulse after the thermal wave leaves the x = L 
surface. However, pulses that have been reflected 
more than once are deleted from the graph. Generally, 
the series solution representing the Green’s function 
converges slowly for small aL/a values. 

Example 2 
The purpose of this example is to show the method 

of determining the Green’s function for a mul- 
tidimensional body. 

Figure 3 shows the value of LG,(x, t 1 x’, 2) at x’ = 0 
and x = 1 as a function of a(t-2)/L*. Each solid line 
in the figure is for a different value of aL/a. The dashed 

Solution. A two-dimensional case is used mainly to 
show the procedure for writing down a solution from 
existing information available in the literature. Only 
the mathematical formulation of the Green’s function 



Green’s function solution for thermal wave equation 2623 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

XiL 

FIG. 2. (a) Forward moving thermal wave at different times. 
(b) Reflected thermal wave at different times. 

FIG. 3. The effect of thermal wave speed on temperature at 
x = L plane. 

FIG. 4. The effect of thermal wave speed on temperature at 
x = 0 plane. 

is presented. This example is concerned with a cyl- 
indrical sector of radius b within 0 < C#J < CJ!J~ ; G = 0 
at r = b, 4 = 0, and C$ = 40. The Green’s function for 
the Fourier-type conduction is (ROl@ll in ref. [6], 
p. 453) 

G(r, A t I r’, 4’, 7) = 
&ZoZ 

J~,(~L,,r/b)J,(~,,r’lb) sin (~4) sin (4’) X 
J,:* bn.) 

x exp [-&&-7)/b2] (47) 

where v =j7~/4~ for j = 1, 2, 3,. , and !l,m are roots 
of J&,,) = 0. Because the eigenfunctions and norms 
remain unchanged, the corresponding solutions for 
G&r, 4, t I r’, d’, 7) and G,&, 4, t I r’, 4’, 7) are 

x J, (~,,rP) J, &d/b) sin (~4) sin (~4’) 
J:* bnv) 

and 

x exp [-~~,t((t-7)/b2]{eP~~(‘~r)cosh[~,,(t-7)]}. 

(48b) 

Equations (48a) and (48b) are exactly the same as 
equation (47) except for the terms in the curly brackets 
which are simply copied from equations (31) and 
(32), respectively. The values of parameters pm” 
and w,, using equations 
&,,u/b2 -a2/2u and CD,,,, = 
equations (34), (35), and (36) will provide the com- 
plete temperature solution for the thermal wave 
equation. 

Example 3 
This numerical example shows the behavior of a 

three-dimensional temperature solution. It is 
especially important to examine the numerical 
behavior of the solution for situations where there is 
no perfect pulse. A cubical body L x L x L with initial 
conditions Ti(x, y, z, 0) = aT,(x, y, z, O)/& = 0 is selec- 
ted. All surfaces are insulated except that heat is being 
released over an area on the z = 0 surface, bounded 
by the lines x = 0, y = 0, x = L/2, and y = L/2. The 
energy released is q,sin (27rat/L*) for a time period 
0 < t < to, where atolL = l/2. A parametric study of 
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the temperature at different times and at two locations 
is examined. 

Solution. The Green’s function given by equation 
(45) is used to construct the Green’s function. The 
Green’s function for Fourier conduction, using the 
product method [6], is 

G(x,y,x,tlx’,y’,z’,t) 

X 
cos (mrcy/L) cos (m?ry/L) cos @nz/L) cos (p7cz/L) 

NW N, 

x exp {-[(lx)’ + (mrt)’ + (p)‘]a(t--7)/L’} 

where the norms N,, N,,,, and N, are equal to L when 
the respective 1, m, and p are zero and they are equal 
to L/2 when 1, m, and p are larger than zero. For 
this specific problem, the boundary conditions are 
homogeneous and the initial temperature and its time 
derivative are zero. Therefore, the temperature solu- 
tion given by equation (35) includes only the a-con- 
jugate component of the Green’s function. Similar to 
Example 2, the u-conjugate component is 

G+&,Y, x, t I .x’,Y’, z’, 7) 

= ,go Js, ,I, cm (wL~~s (IZX’IL) 

cos (mny/L) cos (m7cy’/L) cos @z/L) cos @d/L) 
X 

Nfll N, 

x exp {-[(kc)* + (mn)’ + @n)‘]cr(t-7)/L*} 

The definitions in eouations (IO) and (40) yield 
fllmP = [(ln)2+ (mn)‘+ (p7~)~]a/L~- (r2/2a and ‘w,iP = 

JB&, - (&Pa/b2)2. Equation (35) for this problem 
reduces to 

T(x, Y> z,o 

x 
F 

q&z - 0) sin (2nat/L2) 

+ aq,h(z-0) 3 sin (2nat/L2) _____ 
Cr2 ar I 

dx’ dg’ dz’ 

The Dirac delta function is &z-O) = 0 when z # 0 
and &z-O) = 1 when z = 0. The upper limit of inte- 
gration over r is t when t d t, and to when t > to. The 
substitution of the Green’s function in this equation 
yields 

T(x, y, x, t) 

0.4 
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at/L2 

FIG. 5. The effect of thermal wave speed on temperature at 
point (1, 1, I). 

X 
cos (mny/L) sin (mn/2) cos @71z/L) 

m?rN,,,/L NP 

sin (27cat/L’) + 
2na2 
---cos (27catfL’) 
L2t9 1 

x exp [ - o2 (t - r)/2a] sinh [mmp(l- 711 

2aohP/~2 1 d7 

which reduces to 

kT(x, Y, x, t) 

Lqo 

cos (m7cy/L) sin (m?r/2) 
X 

mnN,,,/L 

x cos (@rz/L) 2a 
NP xT(,,+$$l) 

where 

I, = 
s 

‘sin(2~at/L’)exp[-f~‘(t-~)/2a] 
0 

and 

x 

[ 
sinh b,,& - 91 

2awImpb2 1 d7 

II = 
s 

‘cos(2nat/L2)exp[-f~‘(t-~)/2a] 
II 

X 
[ 

sinh [w&t - ~11 
2aw,Ja2 1 dz, 

The temperature at the point (1, 1,l) is plotted in Fig. 
5 using aL/a equal to 2, 5, 10, and 20. The value of 
atolL for the data is 0.5. The dashed line in the figure 
is for the Fourier-type diffusion. The temperature in 
the thermal wave equation remains equal to zero until 
the arrival of the wave front. When the dimensionless 
wave speed is small, e.g. equal to 2, the solution of the 
thermal wave equation is significantly different. As 
can be seen from Fig. 5, the wave nature of the solu- 
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FIG. 6. The effect of thermal wave speed on temperature at 

point (0, 0, 0). 

tion is maintained for a longer period of time. For 
other dimensionless wave speeds, the solutions 
approach the equilibrium temperature of 0.24/n more 
rapidly. Figure 6 shows the temperature at the point 
(0, 0,O) adjacent to the heat source. Here, the charac- 
teristic of the solution for small values of the dimen- 
sionless wave speed is detectable. The characteristics 
of the non-equilibrium wave with memory are seen, 
in particular, for oL/cr = 2. Figures 5 and 6 show 
that the sine wave travels in the material domain and 
slowly loses intensity due to thermal diffusion. 

The rate of convergence of the solution of the ther- 
mal wave equation is comparable to the solution for 
Fourier conduction. However, convergence will not 
happen before the arrival of the wave front. Figure 7 
shows the convergence of the thermal wave equation 
for a different number of terms for the I, m, and p 
indices. The first set of data in Fig. 7 is for 1 x 1 x 1 
terms where the first, second, and third entries cor- 
respond to the number of terms used for the 1, m, 
and p indices, respectively. The last entry is for the 
35 x 35 x 1000 terms. More terms are used for the 
summation over the p index because the convergence 
in the z direction is slower. For instance, the solution 
using 5 x 5 x 5 terms is different from the case when 
35 x 35 x 1000 terms are used, whereas the solutions 
using 5 x 5 x 30 terms and 3.5 x 35 x 1000 terms are 
virtually identical. The computation time using a 486- 
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FIG. 7. Convergence of the three-dimensional solution of the 
thermal wave equation using a different number of terms for 

dimensionless wave speed oL/a = 2. 

50 DOS-based personal computer was 10 minutes per 
temperature data. 

DISCUSSION 

The numerical calculations leading to the derivation 
of the Green’s function solution for the thermal wave 
equation are lengthy. However, the results are reward- 
ing because the solution of the thermal wave equation 
in regular finite bodies is now available from existing 
solutions of the diffusion equation. Examples 2 and 3 
show that the temperature solution of the thermal 
wave equation can be quickly obtained from the tabu- 
lated values of the Green’s function. The similarity of 
the solution for the thermal wave conduction and for 
the Fourier-type conduction by the Green’s function 
method simplifies the method of obtaining solutions 
to difficult problems. In fact, the solution for many 
thermal wave problems is readily available if the solu- 
tion for the corresponding Fourier-type conduction is 
known. However, the numerical examples show that 
the convergence of the wave-type conduction solu- 
tions is generally poor when the dimensionless wave 
speed, a’/uL, is small. A series solution with a finite 
number of terms cannot adequately describe an 
abrupt change in temperature, e.g. a traveling energy 
pulse ; hence, poor convergence can result, as dem- 
onstrated in Example 1. For this reason, it often 
becomes necessary to employ a convergence-accel- 
erating technique when using a series solution to 
describe an abrupt change in temperature. A solution 
to the thermal wave equation may require different 
strategies to achieve convergence. 

This paper opens the door to further investigation 
of thermal conduction in small structures. The math- 
ematical steps described in this paper transcend the 
solutions for the thermal wave equation. For example, 
the procedure described earlier can be used to study 
the hyperbolic two-step radiation heating model 
described by Qui and Tien [9]. One can show that the 
argument of hyperbolic sine and hyperbolic cosine 
functions for the two-step model are always real ; 
hence, there are no wave-type thermal effects. 
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